Partiel

Durée : 2 heures. Toutes les réponses doivent être justifiées. Les documents ne sont pas autorisés. Il n'est pas nécessaire de tout faire pour avoir une très bonne note. Les exercices sont indépendants.

Exercice 1

Pour tout $n \in \mathbb{N}^*$, on note L_n le segment de \mathbb{R}^2 reliant (0,0) à (1,1/n) et L_{∞} le segment de \mathbb{R}^2 reliant (0,0) à (1,0). Soit L la réunion des L_n pour $n \in \mathbb{N}^* \cup \{\infty\}$. On munit chaque L_n de la topologie de sous-espace de \mathbb{R}^2 . Soit \mathcal{T} l'ensemble des parties O de L telles que pour tout $n \in \mathbb{N}^* \cup \{\infty\}$, $O \cap L_n$ est un ouvert de L_n .

- 1. Montrer que \mathcal{T} est une topologie sur L. Comparer \mathcal{T} avec la topologie de sous-espace de \mathbb{R}^2 .
- 2. (L, \mathcal{T}) est-il séparé? compact?
- 3. Montrer que (L, \mathcal{T}) n'est pas métrisable. Indication : on raisonne par l'absurde ; étant donnée une distance d de L engendrant \mathcal{T} , construire une suite (x_n) telle que $x_n \in L_n \{(0,0)\}$ pour tout $n \in \mathbb{N}^*$, (x_n) tend vers (0,0) dans (L,d) mais pas dans (L,\mathcal{T}) .

Exercice 2

Soit (X, d) un espace métrique. Pour tout $x, y \in X$ et $\epsilon > 0$, une ϵ -chaine joignant x à y est définie comme une suite finie de points z_1, \ldots, z_n de X telle que $z_1 = x$, $z_n = y$ et pour tout $i = 1, 2, \ldots, n - 1$, $d(x_i, x_{i+1}) \le \epsilon$. L'espace métrique X est dit bien enchainé si pour tout x, y dans X et pour tout $\epsilon > 0$, il existe une ϵ -chaine joignant x à y.

- 1. Montrer que si X est connexe, alors X est bien enchainé. Indication : considérer $x \in X$, $\epsilon > 0$ et l'ensemble $E_{x,\epsilon}$ des points $y \in X$ tels qu'il existe une ϵ -chaine joignant x à y.
- 2. Montrer que si X est bien enchainé et compact, alors X est connexe.

Exercice 3

On étudie quelques espaces topologiques quotients. Si \mathcal{R} est une relation d'équivalence sur l'espace topologique X, on munit X/\mathcal{R} de la topologie quotient et on note $\pi: X \to X/\mathcal{R}$ la projection canonique.

- 1. Sur $X = \mathbb{R}$, on considère la relation d'équivalence \mathcal{R} dont les classes sont les singletons $\{x\}$, pour $x \neq 0, 1$ et la partie $\{0, 1\}$. La projection π est-elle ouverte? Identifier un espace topologique simple homéomophe à X/\mathcal{R} (un dessin non justifié suffira).
- 2. Sur $X = \mathbb{R}$, on considère la relation d'équivalence \mathcal{R} telle que $x\mathcal{R}y$ si et seulement s'il existe $n \in \mathbb{Z}$ tel que $x = 2^n y$. Montrer que $\{\pi(0)\}$ est dense dans X/\mathcal{R} . Montrer que $X/\mathcal{R} \{\pi(0)\}$ est séparé.
- 3. Sur $X = \mathbb{R}^2 \{0, 0\}$, on considère la relation d'équivalence \mathcal{R} telle que $(x_1, x_2)\mathcal{R}(y_1, y_2)$ si et seulement s'il existe $n \in \mathbb{Z}$ telle que $(x_1, x_2) = (2^n y_1, 2^{-n} y_2)$. Montrer que pour tout (x, y)

dans X, il existe un ouvert U de X contenant (x,y) telle que $\pi_{|U}$ est un homéomorphisme sur son image. Montrer que le quotient X/\mathcal{R} n'est pas séparé.

Exercice 4

Soit (X, d) un espace métrique complet et soit A une partie de X. Le but de l'exercice est de montrer l'équivalence entre les deux assertions :

- (i) Il existe une distance d' sur A qui engendre la même topologie que la restriction de d à A et pour laquelle (A, d') est complet.
 - (ii) A est une intersection dénombrable d'ouverts de X.

1. Préliminaires

- a) Montrer qu'un fermé d'un espace métrique est une intersection dénombrable d'ouverts.
- b) Montrer que si Y est un espace topologique et $f:Y\to\mathbb{R}$ une application, l'ensemble des points de continuité de f est une intersection dénombrable d'ouverts. Indication : considérer les ensembles

$$E_n := \{x \in Y \mid \exists V \text{ voisinage de } x : \forall y, y' \in V, |f(y) - f(y')| < 1/n\},$$

pour $n \in \mathbb{N}^*$.

- 2. Preuve de $(i) \implies (ii)$
- a) Montrer qu'on peut supposer d' bornée et A dense dans X.
- b) On suppose (i) avec d' bornée et A dense dans X. Pour z dans X, on pose

$$f(z) = \sup \left\{ \limsup_{n \to \infty} d'(x_n, x_{n+1}) \middle/ x \in A^{\mathbb{N}} \text{ et } x_n \to z \right\}.$$

Montrer que f est bien définie, à valeurs réelles et s'annule exactement en les points de A.

- c) Montrer que f est continue en tout point de A. En déduire que A est une intersection dénombrable d'ouverts.
- 3. Preuve de $(ii) \implies (i)$
- a) Soit U un ouvert de X et F le complémentaire de U. On considère d', définie sur U, par

$$d'(x,y) = d(x,y) + \left| \frac{1}{d(x,F)} - \frac{1}{d(y,F)} \right|,$$

Montrer que d' est une distance sur U, engendrant la même topologie que d. Montrer que (U, d') est un espace métrique complet.

b) Montrer que $(ii) \implies (i)$.